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Abstract— Test-time domain adaptation, i.e. adapting source-
pretrained models to the test data on-the-fly in a source-free,
unsupervised manner, is a highly practical yet very challenging
task. Due to the domain gap between source and target data,
inference quality on the target domain can drop drastically
especially in terms of absolute scale of depth. In addition,
unsupervised adaptation can degrade the model performance
due to inaccurate pseudo labels. Furthermore, the model can
suffer from catastrophic forgetting when errors are accumu-
lated over time. We propose a test-time domain adaptation
framework for monocular depth estimation which achieves
both stability and adaptation performance by benefiting from
both self-training of the supervised branch and pseudo labels
from self-supervised branch, and is able to tackle the above
problems: our scale alignment scheme aligns the input features
between source and target data, correcting the absolute scale
inference on the target domain; with pseudo label consistency
check, we select confident pixels thus improve pseudo label
quality; regularisation and self-training schemes are applied
to help avoid catastrophic forgetting. Without requirement of
further supervisions on the target domain, our method adapts
the source-trained models to the test data with significant
improvements over the direct inference results, providing scale-
aware depth map outputs that outperform the state-of-the-arts.
Code is available at https://github.com/Malefikus/ada-depth.

I. INTRODUCTION

Continuous depth estimation from monocular videos is one
of the many fundamental tasks for the development of navi-
gation systems, and is particularly important in autonomous
driving scenarios. The development of deep learning enables
the acquisition of neural networks learned from large training
corpus which can then be used to make inference on the
test data. In real world applications, however, the training
data (source) are not always sufficient for the model to
perform well enough on the test data (target), especially
when the domain gap is large, e.g. when the camera setups
change, when locations and weather conditions are changing,
etc. To tackle this issue, domain adaptation techniques are
introduced [1], [2].

Specifically, to acquire better inference from the source-
trained model, one needs to further fine-tune the network on
the test data in an unsupervised or self-supervised manner,
and more practically in an online fashion, i.e. making predic-
tion on the current frame directly after the adaptation to this
frame, then moving on to the next frame. In addition, due
to privacy concerns, legal constraints or technical reasons,
the source data are generally considered unavailable during
the adaptation process, making it more challenging but
expanding its applicability. In general, source-free test-time
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Fig. 1. Overview of our test-time domain adaptation framework. We adapt
our source-trained network to the changing target data during test time in
an online fashion, without requiring the access of the source data anymore.

domain adaptation is crucial and practical to real world
machine perception applications.

We tackle the problem of domain adaptation for depth esti-
mation under this challenging source-free, online setup with
continuously changing environment. Fig. 1 is a brief recap of
our framework. On the source domain, we train networks on
the training videos and the corresponding Lidar groundtruth
depth maps. To adapt the source-trained networks to the tar-
get domain, we fine-tune the source-pretrained networks with
the aligned test images consecutively in a temporal order
on-the-fly. Our framework is designed for stable, long-term
adaptation without catastrophic forgetting but still with a lot
of accuracy improvement. Note that our method acquires
scale-awareness through distilling knowledge from scale
generalisable source-trained models; therefore, unlike test-
time domain adaptation works such as [1], our method does
not require extra scale supervision (e.g. velocity supervision)
from the test set during adaptation, nor access to the source
data, which expands its applicability on low-cost systems.
In addition, unlike [1] which requires separately adapting
to short sequences, our method continuously adapts to long
sequences without degradation in performance.

In summary, our contributions are as follows:
• We develop a test-time domain adaptation framework

for continuous depth estimation from monocular videos
that significantly improves the inference quality of
source-trained models on target data and outperforms
the state-of-the-arts. Unlike previous works, our frame-
work is able to produce scale-aware depth predictions on
the target data without requiring additional supervision
from either target domain or source domain, thanks to
our novel 3-branch network taking advantage of both
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supervised and self-supervised models.
• We propose a simple yet effective pixel scale alignment

scheme between source and target data based on geo-
metrical constraints, which significantly improves the
source-model inference quality on the target domain
already before the adaptation.

• A novel consistency checking technique is proposed to
filter out erroneous pixels in the pseudo labels during
adaptation, which improves the pseudo label quality
thus enhances the adaptation performance.

• We enable long-term adaptation without catastrophic
forgetting by proposing an effective regularisation
scheme integrated into the effective EMA self-training
scheme in the adaptation process.

II. RELATED WORKS

A. Domain Adaptation

Domain adaptation, or more specifically referred to as
unsupervised domain adaptation (UDA), aims to improve the
model trained on (usually labelled) source domain for the
inference on the unlabelled target domain [3], [4]. There are
various techniques for adaptation, such as input alignment
[5], [6] and feature distribution alignment between two do-
mains [7], [8], [9]. In addition to feature alignment, there are
self-training techniques [10], [11], [12], [13] which fine-tune
the model to the target domain using pseudo labels created
by the model itself. Under different additional constraints,
there are different variants of domain adaptation tasks.

1) Test-Time Domain Adaptation: test-time domain adap-
tation adds a constraint to the general domain adaptation
by restricting the access to the source domain data during
adaptation [14], [15]. but usually assumes an offline scenario
where all the test data are provided for network fine-tuning,
making the applicability limited.

2) Continuous Domain Adaptation: continuous domain
adaptation does not limit the target domain to a specific one,
but assumes continually changing target data [2]. Most of
the works, however, require access to data from both the
source and target domains in order to align the distributions.
[2] tackles the problem of source-free, continuous test-time
domain adaptation, but only for classification task. For the
specific task of depth estimation under this setup, there is
not a lot research done, except for [1] which still requires
additional supervision (ground truth velocity) from the target
data in order to generate correctly scaled depth maps.

B. Monocular Depth Estimation

Monocular depth estimation aims to predict dense depth
maps from single-view RGB images or videos. A lot of
research is done in training neural networks by either su-
pervised or self-supervised means.

1) Supervised Monocular Depth Estimation: supervised
monocular depth estimation methods assume the availability
of paired input images and groundtruth Lidar points and
utilise the sparse Lidar points as supervisory signals to train
models that can produce dense depth maps. A lot of neural
network architectures are designed to learn dense depth map

from Lidar groundtruth [17], [18], [19], [20], [21], [22], [23].
However, the high cost of Lidar makes it hard to assume the
groundtruth to be always available, which is a significant
drawback of the supervised methods.

2) Self-supervised Monocular Depth Estimation: Self-
supervised monocular depth estimation methods generally
formulate the depth estimation task as a view synthesis
problem [24], [25], where depth and relative camera pose
estimators are trained jointly to calculate the view synthesis
losses. Improvements are done on top of this basic train-
ing framework, for example the utilisation of geometrical
consistency through auxiliary optical flow estimations [26],
[27], additional weak supervisions such as velocity [28],
or temporal cost volume calculation [29]. Although self-
supervised methods achieve promising results without re-
quirement of groundtruth Lidar points during training thus
can be easily deployed in domain adaptation scenarios, it
has a fatal drawback – the output depth maps are always
up to an unknown scale, meaning that we still need the
groundtruth Lidar points of the test data to apply scale
alignment during inference, unless we develop reliable scale
recovery techniques (such as in [30]), which is non-trivial.

III. METHOD

In this section we show the detailed design of our test-
time domain adaptation framework for continuous depth
estimation. Given monocular video data with corresponding
groundtruth Lidar points in the source domain, we first
train two source models using existing supervised and self-
supervised depth estimation training scheme, respectively.
Note that the supervised model is able to produce absolute
scale depth maps, while the self-supervised model does not
have any scale awareness, by principle. During adaptation,
as is shown in Fig. 2, we first initialise three branches (a reg-
ularisation branch, a supervised branch and a self-supervised
branch) using the source-trained supervised model (for the
first two) and the self-supervised model (for the last). When
new data come, the self-supervised branch can be updated
in the way it is originally trained, then be used to generate
a pseudo label; the regularisation branch produces another
pseudo label for regularisation. The two pseudo labels are
then compared with the prediction made by the supervised
branch, to filter out less confident pixels. The filtered pseudo
labels are then used to calculate losses thus update the
supervised branch. The updated supervised branch makes
final predictions for this frame, and the framework moves
on to the next frame.

Our 3-branch adaptation framework is designed in a way
that we can benefit from the knowledge distilled from both
the supervised and the self-supervised models. Research
[31] has shown that disentangling the supervised and self-
supervised training conduces the complementary advantages
of both loss functions, while training only one model mixing
both the losses results in inheriting the limitations from both.
For our test-time domain adaptation problem, specifically,
the supervised branch provides scale-aware, robust depth
predictions which can be further improved by self-training
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Fig. 2. Pipeline of our adaptation framework. The three branches (from top to bottom) are initialised by source-trained supervised model/ supervised
model/ self-supervised model, respectively. For every frame of the test data, the self-supervised branch (bottom) is firstly updated by the unsupervised
image synthesis loss which requires only 2 adjacent RGB frames, then be used to create a pseudo label. The regularisation branch (top) generates another
pseudo label. The supervised branch (middle) makes a prediction which is then compared with the two pseudo labels, to filter out less confident pixels and
create more robust pseudo labels. These pseudo labels are used to update the supervised branch. To increase stability we adopt the EMA [16] self-training
scheme for supervised branch. After the iteration, the supervised branch makes an accurate, scale-aware final prediction, and the networks move on to the
next frame. Some network details are omitted for simplicity and will be introduced in the texts.

techniques during adaptation, but the improvement is limited;
the self-supervised branch generates scale-ambiguous depth
estimation, but can be quickly adapted to the test data via
self-supervised loss with significant performance improve-
ment. With the two sets of pseudo labels created by the
two branches, we improve the accuracy of depth predictions
on the test data while retaining the scale-awareness and
robustness, even for long-term adaptation.

A. Supervised Branch

For the supervised branch in our framework, we pretrain
a single-frame monocular depth estimation network in a
supervised way on the source data, following the network ar-
chitecture in [22]. It consists of a powerful swin-transformer
[32] encoder, and a hierarchical decoder comprising four
levels of neural window FC-CRF modules [22]. A supervised
loss Ls is defined between the network predictions d̂ and
groundtruth sparse Lidar points d∗. Following common prac-
tices in previous works [33], [18], [20], [22], we adopt the
Scale-Invariant Logarithmic (SILog) loss proposed by [17].
First, the logarithm difference between d̂ and d∗ is calculated
on each pixel i of the K pixels where the groundtruth Lidar
points are available:

∆di = log d̂i − logd∗
i , (1)

then the SILog loss is computed as:

Ls = α

√
1
K ∑

i
∆d2

i −
λ

K2 (∑
i

∆di)2, (2)

where λ is a variance minimising factor and α is a weight
constant controlling the scale of the loss. Following previous

works [18], [22], we set λ to 0.85 and α to 10.

B. Self-Supervised Branch

We train our self-supervised depth estimation branch on
monocular source videos following the Monodepth2 [25]
pipeline, where two separate networks – a depth network
and a pose network – are jointly trained. For the network ar-
chitectures we follow [25] and adopt two separate ResNet50
[34] encoders and task specific convolutional decoders for
each. The depth network receives an RGB image as input
and produces its corresponding depth map; the pose network
takes adjacent frames (in our experiments, 2 frames) as input
and predicts the relative poses between the frames. The
predicted depth map and relative poses can be used to warp
one image frame to another; then, a loss function can be
defined on the synthesised image and the target image by
calculating their photometric differences. For more detailed
explanations of the network architecture and losses please
refer to [25].

C. Target Domain Scale Alignment

In domain adaptation scenarios, most of the times there
are different camera setups between source and target data,
resulting in different image sizes. Given that the real world
scale does not vary, larger image sizes stand for larger object
sizes on the image, which, by intuition, results in different
scale estimations for the predicted depth map. We seek to
align the pixel scales between the source and target images
in order to fix the image/real world proportions, thus avoid
drastic disparity between estimated scales on the source and
target data. We assume that we do not have access to the



source data, but only the metadata (camera intrinsics, camera
height to the ground, etc.) of the source and target data.

According to principles of imaging [35], larger focal
length results in bigger object size on the image. Therefore,
given a target image It(Ht ,Wt) with height Ht and width Wt
whose unit is aligned with the focal length ft , and a known
source camera focal length fs, we can align the target image
“pixel sizes” (i.e. object sizes) to the source image by simply
resizing the image by the proportion of the focal lengths:

Ît = It(Ht ·
fs

ft
, Wt ·

fs

ft
). (3)

Another important factor which affects the scale of imag-
ing is camera height. In autonomous driving scenes, the
imaging of the stretch of the pavement is an important ref-
erence to absolute scale estimation; we seek to further align
the pixel sizes of the roads on the images between source
and target data, to avoid scale drifting during inference.
Specifically, for a stretch of road with a certain distance to
the camera, the two cameras whose heights are h1 and h2
share the same focal length (or the focal lengths are “aligned”
for the images with Equation 3), the sizes of this stretch of
road on the images are i1 and i2, respectively. According to
principles of triangularity, we can derive that the sizes of the
road on the images are proportional to the camera heights:

h1

h2
=

i1
i2
. (4)

With Equation 4 we can further align the pixels of Ît to
the source, given the camera height of the source data hs
and target data ht . The complete scale alignment process
will be simply resizing the target images according to the
focal lengths and camera heights:

Î′t = It(Ht ·
fs

ft
· hs

ht
, Wt ·

fs

ft
· hs

ht
). (5)

D. Continuous Test-Time Adaptation

After the source models being trained and the target
images sizes aligned, we perform our adaptation on the
test videos using the pipeline described in Fig. 2. The
supervised branch and self-supervised branch are initialised
by the supervised and self-supervised models trained on
the source data, respectively, and will be updated during
adaptation; the regularisation branch is a copy of the source
trained supervised model and is kept unchanged during the
adaptation process. In every iteration, we first update the self-
supervised branch with the self-supervised loss computed on
this frame, then make prediction on this frame to be used as
a pseudo label; the regularisation branch produces another
pseudo label. Both pseudo labels are compared with the
prediction of the supervised branch, to filter out less reliable
pixels via consistency check. The filtered pseudo labels are
then used to update the supervised branch. In addition, an
EMA self-training scheme is adopted while updating the
supervised branch, to further improve performance gain. The
updated supervised branch makes final prediction for this

frame, and the adaptation moves on to the next frame. Details
of each component are listed below:

1) Pseudo Label Consistency: A consistency checking
scheme is performed on the pseudo labels created by the
self-supervised branch and the regularisation branch, which
is conducted by computing the per-pixel difference between
one pseudo label Dp (either from the regularisation branch or
the self-supervised branch) and the corresponding prediction
from the supervised branch Ds and masking out the pixels
that have bigger difference. The resulting valid mask M is
computed as the Iverson bracket:

M =

[∥∥Ds − γDp
∥∥2

γDp
< σ

]
, (6)

where σ is the threshold which we empirically set to 0.4 in
our experiments, and γ is the alignment factor. For regulari-
sation branch, γ is set to 1. For the pseudo labels created by
self-supervised branch which are scale-ambiguous, we align
them to the predictions from supervised branch by median
scaling:

γ =
median(Ds)

median(Dp)
. (7)

Then the pseudo labels are filtered to:

D̂p = γMDp. (8)

2) EMA Self-Training: When updating the supervised
branch, we adopt the EMA self-training scheme [16] for
further performance gain and better robustness. To generate
Ds, instead of directly using the updated supervised branch,
we predict from a slow copy of the supervised model
parameters θt at training step t by its exponential moving
average over time, defined as:

θ
′
t = αθ

′
t−1 +(1−α)θt , (9)

where α is the smoothness factor which we empirically set
to 0.99 in our experiments. For more details of EMA training
technique please refer to [16].

3) Adaptation Loss: we update the supervised branch by
computing SILog loss between its output Ds and the filtered
pseudo labels created by the two branches:

Lada = Ls(Ds, D̂ps)+Ls(Ds, D̂pr), (10)

where D̂ps is the filtered pseudo label created by the super-
vised branch and D̂pr is the one by the regularisation branch.
Ls is the SILog loss defined in Equation 2.

IV. EXPERIMENT

We perform extensive experiments and ablation study
on various datasets to demonstrate the effectiveness of our
framework. This section describes our experimental setup
and demonstrates the results and discussions. More technical
details of our implementation can be found in our code
release.



TABLE I
RESULTS ON DDAD [28] VALIDATION SET (CROSS-DATASET). WE REPORT THE ABSOLUTE SCALE RESULTS (WITHOUT MEDIAN SCALING) OF

SOTA METHODS, SOTA + OUR SCALE ALIGNMENT SCHEME (INDICATED AS +SA), AND OUR METHOD. BEST IS ILLUSTRATED IN BOLD.

method target
adaptation

source
supervision

lower is better higher is better
absRel sqRel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

DNet [30] - - 0.383 5.297 13.757 0.518 0.385 0.675 0.824
NewCRF [22] - ✓ 0.437 8.211 18.498 0.817 0.249 0.362 0.480
CoMoDA+sup [1] ✓ ✓ 1.297 34.085 24.355 0.825 0.082 0.177 0.374
CoTTA [2] ✓ ✓ 0.441 8.313 18.598 0.829 0.246 0.358 0.473
DNet [30] + SA - - 0.200 1.951 8.508 0.255 0.724 0.936 0.975
NewCRF [22] + SA - ✓ 0.144 1.516 7.951 0.228 0.788 0.938 0.976
DNet [30] + SA + Ada ✓ - 0.191 2.644 8.400 0.232 0.775 0.935 0.974
CoMoDA+sup + SA [1] ✓ ✓ 1.152 29.064 18.800 0.740 0.168 0.356 0.576
CoTTA + SA [2] ✓ ✓ 0.142 1.501 7.909 0.226 0.793 0.939 0.977
Ours ✓ ✓ 0.112 1.173 6.649 0.186 0.867 0.961 0.984

TABLE II
RESULTS ON WAYMO [36] DATASET UNDER DIFFERENT TIME OF DAY/WEATHER CONDITIONS (CROSS-DATASET). ALL METHODS ARE APPLIED

AFTER OUR INPUT SCALE ALIGNMENT SCHEME, WITHOUT MEDIAN SCALING. BEST IS ILLUSTRATED IN BOLD.

time/weather
condition method target

adaptation
source

supervision
lower is better higher is better

absRel sqRel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

clear night
(sunny-night-5)

DNet [30] - - 0.398 7.469 16.422 0.586 0.351 0.597 0.752
NewCRF [22] - ✓ 0.199 2.116 9.558 0.272 0.607 0.903 0.972
DNet [30] + Ada ✓ - 0.245 2.776 10.154 0.322 0.410 0.875 0.965
CoMoDA+sup [1] ✓ ✓ 0.577 8.834 13.277 0.483 0.301 0.537 0.783
CoTTA [2] ✓ ✓ 0.199 2.110 9.551 0.271 0.607 0.904 0.972
Ours ✓ ✓ 0.177 1.780 8.524 0.239 0.711 0.932 0.984

rainy incl. day,
dawn and night

(rainy-5)

DNet [30] - - 0.456 8.468 15.002 0.843 0.123 0.568 0.729
NewCRF [22] - ✓ 0.244 3.439 10.021 0.374 0.601 0.815 0.890
DNet [30] + Ada ✓ - 0.471 11.119 14.635 0.468 0.409 0.716 0.836
CoMoDA+sup [1] ✓ ✓ 0.669 11.494 13.203 0.521 0.253 0.519 0.757
CoTTA [2] ✓ ✓ 0.246 3.495 10.043 0.379 0.598 0.814 0.886
Ours ✓ ✓ 0.229 2.891 9.030 0.314 0.627 0.845 0.934

A. Datasets

1) KITTI dataset [37]: this dataset is captured in the city
of Karlsruhe, Germany, including urban, rural and highway
areas. The dataset includes 64 sequences of RGB images
at 10fps with projected Lidar points as ground truth depth
maps with a maximum range of 80m. Improved (denser)
depth maps are provided on the KITTI depth estimation
benchmark set [38]. We adopt the same data splitting pattern
as introduced in [17], which splits the data into 32 seqs
for training (∼40k frames) and 32 seqs for validation (∼4k
frames). The camera height of this dataset is 1.65m and focal
lengths are on average about 750mm.

2) DDAD dataset [28]: this dataset is recorded in several
cities in the United States and Japan. It contains monocular
videos at 10fps and the corresponding accurate ground-truth
depth (across a full 360 degree field of view) generated from
high-density LiDARs (up to 200m) mounted on a fleet of
self-driving cars. The training set contains 150 scenes with
a total of 12650 individual samples, and the validation set
contains 50 scenes with a total of 3850 samples. The camera
height is around 1.63m on average, and focal lengths around
2100mm.

3) Waymo dataset [36]: the more recent Waymo (per-
ception) dataset is recorded across a range of conditions in
multiple cities in the US, with large geographic coverage
within each city. It comprises of images recorded by multiple

high-resolution cameras and sensor readings from multiple
high-quality LiDAR scanners (75m) mounted on a fleet of
self-driving vehicles. It consists of around 1k videos, each
about 200 frames at 10fps, under different weather conditions
(sunny, rain) and time of day (day, dawn, night). The camera
height is 2.12m, and focal lengths around 2000mm. In our
experiments, we define several sub-sequences: sunny-night-
5 for the first 5 sequences of “sunny” night in the validation
set; rainy-5 for all of the 5 rainy scene from train set,
including 1 during day, 3 in dawn and 1 at night; all-6
for 6 sequences from the Waymo training set, including
one for each time of day and weather (“day”, “dawn” or
“night”; “sunny” or “rain”, all are the first ones from the
category); sunny-day-5 for the first 5 “sunny” “day” scene
of the evaluation set.

B. Evaluation metrics

We evaluate depth predictions using the standard metrics
described in [17], which are computed by comparing the
predicted depth and ground truth depth of the pixels where
Lidar points are available. The error metrics, i.e. absolute rel-
ative difference (absRel), square relative difference (sqRel),
root mean squared error (RMSE) and RMSE in logarithm
space (RMSE log) are considered the lower the better, and
for the 3 accuracy metrics where σ – the ratio of prediction
and groundtruth – being under certain thresholds, higher is
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TABLE III
ABLATIVE RESULTS ON WAYMO “SUNNY-DAY-5” (CROSS-DATASET).

WE REPORT THE RESULTS WITH AND WITHOUT GROUND TRUTH

MEDIAN SCALING (“SCALE FACTOR” GT AND -, RESPECTIVELY). BEST

IS ILLUSTRATED IN BOLD, SECOND BEST IN UNDERLINE.

scale
factor method lower is better

absRel sqRel RMSE RMSE log

GT

Monodepth2 (self-sup) 0.332 4.564 11.443 0.410
+ scale align 0.229 4.697 11.314 0.277
+ naı̈ve adaptation 0.209 3.631 9.345 0.249
NewCRF [22] (sup) 0.378 5.042 12.591 0.449
+ scale align (focal) 0.186 2.106 8.014 0.237
+ scale align (height) 0.157 1.615 6.853 0.210
+ self-sup pseudo 0.196 2.988 8.422 0.233

reg pseudo 0.157 1.599 6.802 0.209
self-sup+reg pseudo 0.158 1.658 6.721 0.204

+ pseudo consistency 0.154 1.644 6.825 0.205
+ ema training 0.147 1.590 6.652 0.196

-

NewCRF [22] (sup) 0.482 9.234 19.413 0.858
+ scale align (focal) 0.291 3.424 11.408 0.403
+ scale align (height) 0.162 2.076 7.346 0.211
+ self-sup pseudo 0.188 2.550 7.917 0.227

reg pseudo 0.163 2.090 7.324 0.210
self-sup+reg pseudo 0.163 2.063 7.139 0.205

+ pseudo consistency 0.159 2.056 7.262 0.206
+ ema training 0.155 2.130 7.241 0.202

better. For more detailed formulation of these metrics please
refer to [17].

In our evaluation, we report both the results with and with-
out the “groundtruth median scaling” operation described in
[25], where we scale the predictions with the ratio of the
medians of groundtruth and predictions.

C. Experimental Results

We first evaluate our method on a cross-dataset setting,
where we adapt the source models trained on the train set
of KITTI Eigen split [17] to the DDAD dataset to get
absolute scale predictions, shown in Table I. We observe
that directly applying the state-of-the-art methods to the
new dataset results in a huge performance drop, making the
predictions nearly unreasonable. After applying our simple
yet effective input scale alignment scheme, the performance
improves on the state-of-the-art methods by a large margin;

our method further improves significantly over the enhanced
state-of-the-arts, including the naı̈ve adaptation counterpart
(noted as “+ Ada”) of self-supervised methods. For fair
comparison with the same data availability, we report the
CoMoDA method [1] with source models trained with the
Monodepth2 [25] architecture on the KITTI training set
with both supervised and self-supervised loss terms to get
scale-aware depth and pose networks; then we apply the
CoMoDA adaptation scheme on target data without “velocity
supervision” (supervisory on test data) and “replay buffer”
(access to source data) to align with our problem setting.
We denote this variation as “CoMoDA+sup”. Note that our
method continuously adapts to the entire DDAD validation
set without suffering from catastrophic forgetting like [1].

We further evaluate our method on a more challenging
cross-domain setting by applying the KITTI trained source
models on the Waymo [36] dataset, shown in Table II. This
dataset contains more diverse driving scenes in different
cities, different time of day and weather conditions, with
quite a different camera setup compared to that of the source
data. We evaluate our model on the defined “sunny-night-5”
and “rainy-5” sequences. Our method shows significant im-
provements over existing methods and baselines (all without
median scaling, after input scale alignment) in both cases.

Fig. 3 shows how our adaptation method behaves over
time on challenging long, changing environments. We show
the accumulated average RMSE (RMSE averaged over all
previous frames) for the Waymo “all-6” sequences. Our
method adapts better to the new changes with less drift.

D. Ablation Study

We perform ablative study on the Waymo “sunny-day-5”
sequences, shown in Table III. We incrementally add every
component to the baseline (the supervised branch of our
method, based on [22]). The results show that every design
choice helps with enhancing the performance, and our full
model acquires the best performance.

V. CONCLUSIONS

We propose a source-free, online test time domain adap-
tation method for monocular depth estimation. Our input
scale alignment scheme significantly improves the network
inference in the presence of large domain gaps even before
the adaptation, and can be easily integrated into any deep
learning based depth estimation framework. Our 3-branch
self-training framework shows superiority over the naı̈ve
adaptation of either supervised or self-supervised framework.
Our effective regularisation operation keeps the learning
stable while not degrading the performance gain. Extensive
experiments show that our method achieve state-of-the-art
results in various datasets, especially in the challenging
scenario of large domain gap and continuously changing
environment. The practical setting enables our method to
be applied to data-scarce, low-cost systems. An interesting
future direction can be to reduce the model sizes and/or
lighten the training computations in order to deploy it in
real-time applications.
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